Covariance-enhanced discriminant analysis.

نویسندگان

  • Peirong Xu
  • J I Zhu
  • Lixing Zhu
  • Y I Li
چکیده

Linear discriminant analysis has been widely used to characterize or separate multiple classes via linear combinations of features. However, the high dimensionality of features from modern biological experiments defies traditional discriminant analysis techniques. Possible interfeature correlations present additional challenges and are often underused in modelling. In this paper, by incorporating possible interfeature correlations, we propose a covariance-enhanced discriminant analysis method that simultaneously and consistently selects informative features and identifies the corresponding discriminable classes. Under mild regularity conditions, we show that the method can achieve consistent parameter estimation and model selection, and can attain an asymptotically optimal misclassification rate. Extensive simulations have verified the utility of the method, which we apply to a renal transplantation trial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Between-Class Covariance Correction For Linear Discriminant Analysis in Language Recognition

Linear Discriminant Analysis (LDA) is one of the most widely-used channel compensation techniques in current speaker and language recognition systems. In this study, we propose a technique of Between-Class Covariance Correction (BCC) to improve language recognition performance. This approach builds on the idea of WithinClass Covariance Correction (WCC), which was introduced as a means to compen...

متن کامل

Duration dependent covariance regularization in PLDA modeling for speaker verification

In this paper, we present a covariance regularized probabilistic linear discriminant analysis (CR-PLDA) model for text independent speaker verification. In the conventional simplified PLDA modeling, the covariance matrix used to capture the residual energies is globally shared for all i-vectors. However, we believe that the point estimated i-vectors from longer speech utterances may be more acc...

متن کامل

Microsoft Word - Model based Mixture Discriminant Analysis-An Exprimental –

The subject of this paper is an experimental study of a discriminant analysis (DA) based on Gaussian mixture estimation of the class-conditional densities. Five parameterizations of the covariance matrixes of the Gaussian components are studied. Recommendation for selection of the suitable parameterization of the covariance matrixes is given.

متن کامل

Covariance Matrix Estimation in Time Series

Covariances play a fundamental role in the theory of time series and they are critical quantities that are needed in both spectral and time domain analysis. Estimation of covariance matrices is needed in the construction of confidence regions for unknown parameters, hypothesis testing, principal component analysis, prediction, discriminant analysis among others. In this paper we consider both l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrika

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2015